Publications

2009
Maresca TJ, Groen AC, Gatlin JC, Ohi R, Mitchison TJ, Salmon ED. Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity. Curr Biol. 2009;19 (14) :1210-5.Abstract
During animal cell division, a gradient of GTP-bound Ran is generated around mitotic chromatin. It is generally accepted that this RanGTP gradient is essential for organizing the spindle, because it locally activates critical spindle assembly factors. Here, we show in Xenopus laevis egg extract, where the gradient is best characterized, that spindles can assemble in the absence of a RanGTP gradient. Gradient-free spindle assembly occurred around sperm nuclei but not around chromatin-coated beads and required the chromosomal passenger complex (CPC). Artificial enrichment of CPC activity within hybrid bead arrays containing both immobilized chromatin and the CPC supported local microtubule assembly even in the absence of a RanGTP gradient. We conclude that RanGTP and the CPC constitute the two major molecular signals that spatially promote microtubule polymerization around chromatin. Furthermore, we hypothesize that the two signals mainly originate from discreet physical sites on the chromosomes to localize microtubule assembly around chromatin: a RanGTP signal from any chromatin and a CPC-dependent signal predominantly generated from centromeric chromatin.
Kueh HY, Mitchison TJ. Structural plasticity in actin and tubulin polymer dynamics. Science. 2009;325 (5943) :960-3.Abstract
Actin filaments and microtubules polymerize and depolymerize by adding and removing subunits at polymer ends, and these dynamics drive cytoplasmic organization, cell division, and cell motility. Since Wegner proposed the treadmilling theory for actin in 1976, it has largely been assumed that the chemical state of the bound nucleotide determines the rates of subunit addition and removal. This chemical kinetics view is difficult to reconcile with observations revealing multiple structural states of the polymer that influence polymerization dynamics but that are not strictly coupled to the bound nucleotide state. We refer to these phenomena as "structural plasticity" and discuss emerging evidence that they play a central role in polymer dynamics and function.
2008
Kueh HY, Charras GT, Mitchison TJ, Brieher WM. Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers. J Cell Biol. 2008;182 (2) :341-53.Abstract
Turnover of actin filaments in cells requires rapid actin disassembly in a cytoplasmic environment that thermodynamically favors assembly because of high concentrations of polymerizable monomers. We here image the disassembly of single actin filaments by cofilin, coronin, and actin-interacting protein 1, a purified protein system that reconstitutes rapid, monomer-insensitive disassembly (Brieher, W.M., H.Y. Kueh, B.A. Ballif, and T.J. Mitchison. 2006. J. Cell Biol. 175:315-324). In this three-component system, filaments disassemble in abrupt bursts that initiate preferentially, but not exclusively, from both filament ends. Bursting disassembly generates unstable reaction intermediates with lowered affinity for CapZ at barbed ends. CapZ and cytochalasin D (CytoD), a barbed-end capping drug, strongly inhibit bursting disassembly. CytoD also inhibits actin disassembly in mammalian cells, whereas latrunculin B, a monomer sequestering drug, does not. We propose that bursts of disassembly arise from cooperative separation of the two filament strands near an end. The differential effects of drugs in cells argue for physiological relevance of this new disassembly pathway and potentially explain discordant results previously found with these drugs.
Hu C-K, Coughlin M, Field CM, Mitchison TJ. Cell polarization during monopolar cytokinesis. J Cell Biol. 2008;181 (2) :195-202.Abstract
During cytokinesis, a specialized set of proteins is recruited to the equatorial region between spindle poles by microtubules and actin filaments, enabling furrow assembly and ingression before cell division. We investigate the mechanisms underlying regional specialization of the cytoskeleton in HeLa cells undergoing drug-synchronized monopolar cytokinesis. After forced mitotic exit, the cytoskeleton of monopolar mitotic cells is initially radially symmetric but undergoes a symmetry-breaking reaction that simultaneously polarizes microtubules and the cell cortex, with a concentration of cortical furrow markers into a cap at one side of the cell. Polarization requires microtubules, F-actin, RhoA, Myosin II activity, and Aurora B kinase activity. Aurora B localizes to actin cables in a gap between the monopolar midzone and the furrow-like cortex, suggesting a communication between them. We propose that feedback loops between cortical furrow components and microtubules promote symmetry breaking during monopolar cytokinesis and regional specialization of the cytoskeleton during normal bipolar cytokinesis.
Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A. 2008;105 (7) :2415-20.Abstract
We have developed a method to detect DNA synthesis in proliferating cells, based on the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) and its subsequent detection by a fluorescent azide through a Cu(I)-catalyzed [3 + 2] cycloaddition reaction ("click" chemistry). Detection of the EdU label is highly sensitive and can be accomplished in minutes. The small size of the fluorescent azides used for detection results in a high degree of specimen penetration, allowing the staining of whole-mount preparations of large tissue and organ explants. In contrast to BrdU, the method does not require sample fixation or DNA denaturation and permits good structural preservation. We demonstrate the use of the method in cultured cells and in the intestine and brain of whole animals.
Galkin VE, Orlova A, Brieher W, Kueh HY, Mitchison TJ, Egelman EH. Coronin-1A stabilizes F-actin by bridging adjacent actin protomers and stapling opposite strands of the actin filament. J Mol Biol. 2008;376 (3) :607-13.Abstract
Coronins are F-actin-binding proteins that are involved, in concert with Arp2/3, Aip1, and ADF/cofilin, in rearrangements of the actin cytoskeleton. An understanding of coronin function has been hampered by the absence of any structural data on its interaction with actin. Using electron microscopy and three-dimensional reconstruction, we show that coronin-1A binds to three protomers in F-actin simultaneously: it bridges subdomain 1 and subdomain 2 of two adjacent actin subunits along the same long-pitch strand, and it staples subdomain 1 and subdomain 4 of two actin protomers on different strands. Such a mode of binding explains how coronin can stabilize actin filaments in vitro. In addition, we show which residues of F-actin may participate in the interaction with coronin-1A. Human nebulin and Xin, as well as Salmonella invasion protein A, use a similar mechanism to stabilize actin filaments. We suggest that the stapling of subdomain 1 and subdomain 4 of two actin protomers on different strands is a common mechanism for F-actin stabilization utilized by many actin-binding proteins that have no homology.
Wühr M, Chen Y, Dumont S, Groen AC, Needleman DJ, Salic A, Mitchison TJ. Evidence for an upper limit to mitotic spindle length. Curr Biol. 2008;18 (16) :1256-61.Abstract
Size specification of macromolecular assemblies in the cytoplasm is poorly understood [1]. In principle, assemblies could scale with cell size or use intrinsic mechanisms. For the mitotic spindle, scaling with cell size is expected, because the function of this assembly is to physically move sister chromatids into the center of nascent daughter cells. Eggs of Xenopus laevis are among the largest cells known that cleave completely during cell division. Cell length in this organism changes by two orders of magnitude ( approximately 1200 microm to approximately 12 microm) while it develops from a fertilized egg into a tadpole [2]. We wondered whether, and how, mitotic spindle length and morphology adapt to function at these different length scales. Here, we show that spindle length increases with cell length in small cells, but in very large cells spindle length approaches an upper limit of approximately 60 microm. Further evidence for an upper limit to spindle length comes from an embryonic extract system that recapitulates mitotic spindle assembly in a test tube. We conclude that early mitotic spindle length in Xenopus laevis is uncoupled from cell length, reaching an upper bound determined by mechanisms that are intrinsic to the spindle.
Mitchison TJ, Charras GT, Mahadevan L. Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. Semin Cell Dev Biol. 2008;19 (3) :215-23.Abstract
Two views have dominated recent discussions of the physical basis of cell shape change during migration and division of animal cells: the cytoplasm can be modeled as a viscoelastic continuum, and the forces that change its shape are generated only by actin polymerization and actomyosin contractility in the cell cortex. Here, we question both views: we suggest that the cytoplasm is better described as poroelastic, and that hydrodynamic forces may be generally important for its shape dynamics. In the poroelastic view, the cytoplasm consists of a porous, elastic solid (cytoskeleton, organelles, ribosomes) penetrated by an interstitial fluid (cytosol) that moves through the pores in response to pressure gradients. If the pore size is small (30-60nm), as has been observed in some cells, pressure does not globally equilibrate on time and length scales relevant to cell motility. Pressure differences across the plasma membrane drive blebbing, and potentially other type of protrusive motility. In the poroelastic view, these pressures can be higher in one part of a cell than another, and can thus cause local shape change. Local pressure transients could be generated by actomyosin contractility, or by local activation of osmogenic ion transporters in the plasma membrane. We propose that local activation of Na(+)/H(+) antiporters (NHE1) at the front of migrating cells promotes local swelling there to help drive protrusive motility, acting in combination with actin polymerization. Local shrinking at the equator of dividing cells may similarly help drive invagination during cytokinesis, acting in combination with actomyosin contractility. Testing these hypotheses is not easy, as water is a difficult analyte to track, and will require a joint effort of the cytoskeleton and ion physiology communities.
Young DW, Bender A, Hoyt J, McWhinnie E, Chirn G-W, Tao CY, Tallarico JA, Labow M, Jenkins JL, Mitchison TJ, et al. Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat Chem Biol. 2008;4 (1) :59-68.Abstract
High-content screening is transforming drug discovery by enabling simultaneous measurement of multiple features of cellular phenotype that are relevant to therapeutic and toxic activities of compounds. High-content screening studies typically generate immense datasets of image-based phenotypic information, and how best to mine relevant phenotypic data is an unsolved challenge. Here, we introduce factor analysis as a data-driven tool for defining cell phenotypes and profiling compound activities. This method allows a large data reduction while retaining relevant information, and the data-derived factors used to quantify phenotype have discernable biological meaning. We used factor analysis of cells stained with fluorescent markers of cell cycle state to profile a compound library and cluster the hits into seven phenotypic categories. We then compared phenotypic profiles, chemical similarity and predicted protein binding activities of active compounds. By integrating these different descriptors of measured and potential biological activity, we can effectively draw mechanism-of-action inferences.
Charras GT, Coughlin M, Mitchison TJ, Mahadevan L. Life and times of a cellular bleb. Biophys J. 2008;94 (5) :1836-53.Abstract
Blebs are spherical cellular protrusions that occur in many physiological situations. Two distinct phases make up the life of a bleb, each of which have their own biology and physics: expansion, which lasts approximately 30 s, and retraction, which lasts approximately 2 min. We investigate these phases using optical microscopy and simple theoretical concepts, seeking information on blebbing itself, and on cytomechanics in general. We show that bleb nucleation depends on pressure, membrane-cortex adhesion energy, and membrane tension, and test this experimentally. Bleb growth occurs through a combination of bulk flow of lipids and delamination from the cell cortex via the formation and propagation of tears. In extreme cases, this can give rise to a traveling wave around the cell periphery, known as "circus movement." When growth stalls, an actin cortex reforms under the bleb membrane, and retraction starts, driven by myosin-II. Using flicker spectroscopy, we find that retracting blebs are fivefold more rigid than expanding blebs, an increase entirely explained by the properties of the newly formed cortical actin mesh. Finally, using artificially nucleated blebs as pressure sensors, we show that cells rounded up in mitosis possess a substantial intracellular pressure.
Groen AC, Needleman D, Brangwynne C, Gradinaru C, Fowler B, Mazitschek R, Mitchison TJ. A novel small-molecule inhibitor reveals a possible role of kinesin-5 in anastral spindle-pole assembly. J Cell Sci. 2008;121 (Pt 14) :2293-300.Abstract
The tetrameric plus-end-directed motor, kinesin-5, is essential for bipolar spindle assembly. Small-molecule inhibitors of kinesin-5 have been important tools for investigating its function, and some are currently under evaluation as anti-cancer drugs. Most inhibitors reported to date are ;non-competitive' and bind to a specific site on the motor head, trapping the motor in an ADP-bound state in which it has a weak but non-zero affinity for microtubules. Here, we used a novel ATP-competitive inhibitor, FCPT, developed at Merck (USA). We found that it induced tight binding of kinesin-5 onto microtubules in vitro. Using Xenopus egg-extract spindles, we found that FCPT not only blocked poleward microtubule sliding but also selectively induced loss of microtubules at the poles of bipolar spindles (and not asters or monoasters). We also found that the spindle-pole proteins TPX2 and gamma-tubulin became redistributed to the spindle equator, suggesting that proper kinesin-5 function is required for pole assembly.
Niethammer P, Kueh HY, Mitchison TJ. Spatial patterning of metabolism by mitochondria, oxygen, and energy sinks in a model cytoplasm. Curr Biol. 2008;18 (8) :586-91.Abstract
Metabolite gradients might guide mitochondrial localization in cells and angiogenesis in tissues. It is unclear whether they can exist in single cells, because the length scale of most cells is small compared to the expected diffusion times of metabolites. For investigation of metabolic gradients, we need experimental systems in which spatial patterns of metabolism can be systematically measured and manipulated. We used concentrated cytoplasmic extracts from Xenopus eggs as a model cytoplasm, and visualized metabolic gradients formed in response to spatial stimuli. Restriction of oxygen supply to the edge of a drop mimicked distance to the surface of a single cell, or distance from a blood vessel in tissue. We imaged a step-like increase of Nicotinamide adenine dinucleotide (NAD) reduction approximately 600 microm distant from the oxygen source. This oxic-anoxic switch was preceded on the oxic side by a gradual rise of mitochondrial transmembrane potential (Deltapsi) and reactive oxygen species (ROS) production, extending over approximately 600 microm and approximately 300 microm, respectively. Addition of Adenosine triphosphate (ATP)-consuming beads mimicked local energy sinks in the cell. We imaged Deltapsi gradients with a decay length of approximately 50-300 microm around these beads, in the first visualization of an energy demand signaling gradient. Our study demonstrates that mitochondria can pattern the cytoplasm over length scales that are suited to convey morphogenetic information in large cells and tissues and provides a versatile model system for probing of the formation and function of metabolic gradients.
Maloney KN, Fujita M, Eggert US, Schroeder FC, Field CM, Mitchison TJ, Clardy J. Actin-aggregating cucurbitacins from Physocarpus capitatus. J Nat Prod. 2008;71 (11) :1927-9.Abstract
Bioassay-guided fractionation of Physocarpus capitatus yielded two new cucurbitacins (3 and 4) along with the known cucurbitacin F (1) and dihydrocucurbitacin F (2). Preliminary mechanism of action studies indicate that the cucurbitacins cause actin aggregates and inhibit cell division.
Kueh HY, Brieher WM, Mitchison TJ. Dynamic stabilization of actin filaments. Proc Natl Acad Sci U S A. 2008;105 (43) :16531-6.Abstract
We report here that actin filaments in vitro exist in two populations with significantly different shrinkage rates. Newly polymerized filaments shrink rapidly, primarily from barbed ends, at 1.8/s, but as they age they switch to a stable state that shrinks slowly, primarily from pointed ends, at approximately 0.1/s. This dynamic filament stabilization runs opposite to the classical prediction that actin filaments become more unstable with age as they hydrolyze their bound ATP and release phosphate. Upon cofilin treatment, aged filaments revert to a dynamic state that shows accelerated shrinkage from both ends at a combined rate of 5.9/s. In light of recent electron microscopy studies [Orlova A, et al. (2004) Actin-destabilizing factors disrupt filaments by means of a time reversal of polymerization. Proc Natl Acad Sci USA 101:17664-17668], we propose that dynamic stabilization arises from rearrangement of the filament structure from a relatively disordered state immediately after polymerization to the canonical Holmes helix, a change that is reversed by cofilin binding. Our results suggest that plasticity in the internal structure of the actin filament may play a fundamental role in regulating actin dynamics and may help cells build actin assemblies with vastly different turnover rates.
Wühr M, Mitchison TJ, Field CM. Mitosis: new roles for myosin-X and actin at the spindle. Curr Biol. 2008;18 (19) :R912-4.Abstract
Roles for actin and myosin in positioning mitotic spindles in the cell are well established. A recent study of myosin-X function in early Xenopus embryo mitosis now reports that this unconventional myosin is required for pole integrity and normal spindle length by localizing to poles and exerting pulling forces on actin filaments within the spindle.
Orth JD, Tang Y, Shi J, Loy CT, Amendt C, Wilm C, Zenke FT, Mitchison TJ. Quantitative live imaging of cancer and normal cells treated with Kinesin-5 inhibitors indicates significant differences in phenotypic responses and cell fate. Mol Cancer Ther. 2008;7 (11) :3480-9.Abstract
Kinesin-5 inhibitors (K5I) are promising antimitotic cancer drug candidates. They cause prolonged mitotic arrest and death of cancer cells, but their full range of phenotypic effects in different cell types has been unclear. Using time-lapse microscopy of cancer and normal cell lines, we find that a novel K5I causes several different cancer and noncancer cell types to undergo prolonged arrest in monopolar mitosis. Subsequent events, however, differed greatly between cell types. Normal diploid cells mostly slipped from mitosis and arrested in tetraploid G(1), with little cell death. Several cancer cell lines died either during mitotic arrest or following slippage. Contrary to prevailing views, mitotic slippage was not required for death, and the duration of mitotic arrest correlated poorly with the probability of death in most cell lines. We also assayed drug reversibility and long-term responses after transient drug exposure in MCF7 breast cancer cells. Although many cells divided after drug washout during mitosis, this treatment resulted in lower survival compared with washout after spontaneous slippage likely due to chromosome segregation errors in the cells that divided. Our analysis shows that K5Is cause cancer-selective cell killing, provides important kinetic information for understanding clinical responses, and elucidates mechanisms of drug sensitivity versus resistance at the level of phenotype.
2007
Ohi R, Burbank K, Liu Q, Mitchison TJ. Nonredundant functions of Kinesin-13s during meiotic spindle assembly. Curr Biol. 2007;17 (11) :953-9.Abstract
Spatiotemporal control of microtubule depolymerization during cell division underlies the construction and dynamics of mitotic and meiotic spindles. Owing to their potent ability to disassemble microtubules, Kinesin-13s constitute an important class of microtubule destabilizing factors. Unfertilized Xenopus eggs, similar to other metazoan cells, contain the prototypical Kinesin-13 MCAK as well as a second family member, XKIF2. Here, we compare the roles of MCAK and XKIF2 during spindle assembly in Xenopus extracts. We find that although MCAK and XKIF2 have similar localization and biochemical properties, XKIF2 is not required for spindle assembly and, further, cannot substitute for MCAK. Altering dosage of the two kinesins demonstrates that spindle length is exquisitely sensitive to MCAK concentration but not XKIF2 concentration. Finally, we demonstrate that the rate of poleward microtubule flux in Xenopus-extract spindles is unaffected by XKIF2 depletion and is only modestly sensitive to reduction of MCAK action. We suggest that, in contrast to models proposed for mammalian somatic cell and embryonic Drosophila spindles, Kinesin-13s do not play a central role in poleward flux by depolymerizing minus ends. Rather, MCAK, but not XKIF2, plays a central role in regulating dynamic instability of plus ends and controls spindle length by that mechanism.
Burbank KS, Mitchison TJ, Fisher DS. Slide-and-cluster models for spindle assembly. Curr Biol. 2007;17 (16) :1373-83.Abstract
BACKGROUND: Mitotic and meiotic spindles are assemblies of microtubules (MTs) that form during cell division to physically separate sister chromosomes. How the various components of spindles act together to establish and maintain the dynamic bipolar structure of spindles is not understood. Interactions between MTs and motors have been studied both experimentally and theoretically in many contexts, including the self-organization of arrays of MTs by motors and the competition between different classes of motors to move a single load. This work demonstrates how the interplay between two types of motors together with continual nucleation of MTs by chromosomes could organize the MTs into spindles. RESULTS: We propose a slide-and-cluster model based on four known molecular activities: MT nucleation near chromosomes, the sliding of MTs by a plus-end-directed motor, the clustering of their minus ends by a minus-end-directed motor, and the loss of MTs by dynamic instability. Our model applies to overlapping, nonkinetochore MTs in anastral spindles, and perhaps also to interpolar MTs in astral spindles. We show mathematically that the slide-and-cluster mechanism robustly forms bipolar spindles with sharp poles and a stable steady-state length. This model accounts for several experimental observations that were difficult to explain with existing models. Three new predictions of the model were tested and verified in Xenopus egg extracts. CONCLUSIONS: We show that a simple two-motor model could create stable, bipolar spindles under a wide range of physical parameters. Our model is the first self-contained model for anastral spindle assembly and MT sliding (known as poleward flux). Our experimental results support the slide-and-cluster scenario; most significantly, we find that MT sliding slows near spindle poles, confirming the model's primary prediction.
Vrabioiu AM, Mitchison TJ. Symmetry of septin hourglass and ring structures. J Mol Biol. 2007;372 (1) :37-49.Abstract
Septin filaments form ordered hourglass and ring-shaped structures in close apposition to the yeast bud-neck membrane. The septin hourglass scaffolds the asymmetric localization of many essential cell division proteins. However, it is unknown whether the septin structures have an overall polarity along the mother-daughter axis that determines the asymmetric protein localization. Here we engineered rigid septin- green fluorescent protein (GFP) fusions with various fluorescence dipole directions by changing the position of the GFP beta-barrel relative to the septin filament axis. We then used polarized fluorescence microscopy to detect potential asymmetries in the filament organization. We found that both the hourglass and ring filament assemblies have sub-resolution C(2) symmetry and lack net polarity along the mother-daughter axis. The hourglass filaments have an additional degree of symmetry relative to the ring filaments, most likely due to a twist in their higher-order structure. We previously reported that during the hourglass to rings transition septin filaments change their direction. Here we show that the filaments also undergo a change in their lateral organization, consistent with filament untwisting. The lack of net septin polarity along the mother-daughter axis suggests that there are no septin-based structural reasons for the observed asymmetry of other proteins. We discuss possible anisotropic processes that could break the septin symmetry and establish the essential bud-neck asymmetry.
2006
Eggert US, Mitchison TJ, Field CM. Animal cytokinesis: from parts list to mechanisms. Annu Rev Biochem. 2006;75 :543-66.Abstract
The mechanism underlying cytokinesis, the final step in cell division, remains one of the major unsolved questions in basic cell biology. Thanks to advances in functional genomics and proteomics, we are now able to assemble a "parts list" of proteins involved in cytokinesis. In this review, we discuss how to relate this parts list to biological mechanism. For easier analysis, we split cytokinesis into discrete steps: cleavage plane specification, rearrangement of microtubule structures, contractile ring assembly, ring ingression, and completion. We report on the advances that have been made to understand these steps and how they can be integrated into a global understanding of cytokinesis. We also discuss the extent to which classic questions have been answered and identify major outstanding questions.

Pages