Publications

2012
Maiuri P, Terriac E, Paul-Gilloteaux P, Vignaud T, McNally K, Onuffer J, Thorn K, Nguyen PA, Georgoulia N, Soong D, et al. The first World Cell Race. Curr Biol. 2012;22 (17) :R673-5.
Vale RD, DeRisi J, Phillips R, Mullins DR, Waterman C, Mitchison TJ. Graduate education. Interdisciplinary graduate training in teaching labs. Science. 2012;338 (6114) :1542-3.
Tan ES, Krukenberg KA, Mitchison TJ. Large-scale preparation and characterization of poly(ADP-ribose) and defined length polymers. Anal Biochem. 2012;428 (2) :126-36.Abstract
Poly(ADP-ribose) (pADPr) is a large, structurally complex polymer of repeating ADP-ribose units. It is biosynthesized from NAD⁺ by poly(ADP-ribose) polymerases (PARPs) and degraded to ADP-ribose by poly(ADP-ribose) glycohydrolase. pADPr is involved in many cellular processes and exerts biological function through covalent modification and noncovalent binding to specific proteins. Very little is known about molecular recognition and structure-activity relationships for noncovalent interaction between pADPr and its binding proteins, in part because of lack of access to the polymer on a large scale and to units of defined lengths. We prepared polydisperse pADPr from PARP1 and tankyrase 1 at the hundreds of milligram scale by optimizing enzymatic synthesis and scaling up chromatographic purification methods. We developed and calibrated an anion exchange chromatography method to assign pADPr size and scaled it up to purify defined length polymers on the milligram scale. Furthermore, we present a pADPr profiling method to characterize the polydispersity of pADPr produced by PARPs under different reaction conditions and find that substrate proteins affect the pADPr size distribution. These methods will facilitate structural and biochemical studies of pADPr and its binding proteins.
Nguyen PA, Ishihara K, Wühr M, Mitchison TJ. Pronuclear migration: no attachment? No union, but a futile cycle!. Curr Biol. 2012;22 (10) :R409-11.Abstract
How do pronuclei migrate towards each other? The zebrafish futile cycle gene is shown to encode a maternally expressed membrane protein required for nuclear attachment and migration along the sperm aster.
Kim S, Peshkin L, Mitchison TJ. Vascular disrupting agent drug classes differ in effects on the cytoskeleton. PLoS One. 2012;7 (7) :e40177.Abstract
Vascular disrupting agents (VDAs), anti-cancer drugs that target established tumor blood vessels, fall into two main classes: microtubule targeting drugs, exemplified by combretastatin A4 (CA4), and flavonoids, exemplified by 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Both classes increase permeability of tumor vasculature in mouse models, and DMXAA in particular can cause massive tumor necrosis. The molecular target of CA4 is clearly microtubules. The molecular target(s) of DMXAA remains unclear. It is thought to promote inflammatory signaling in leukocytes, and has been assumed to not target microtubules, though it is not clear from the literature how carefully this assumption has been tested. An earlier flavone analog, flavone acetic acid, was reported to promote mitotic arrest suggesting flavones might possess anti-microtubule activity, and endothelial cells are sensitive to even mild disruption of microtubules. We carefully investigated whether DMXAA directly affects the microtubule or actin cytoskeletons of endothelial cells by comparing effects of CA4 and DMXAA on human umbilical vein endothelial cells (HUVEC) using time-lapse imaging and assays for cytoskeleton integrity. CA4 caused retraction of the cell margin, mitotic arrest and microtubule depolymerization, while DMXAA, up to 500 µM, showed none of these effects. DMXAA also had no effect on pure tubulin nucleation and polymerization, unlike CA4. We conclude that DMXAA exhibits no direct anti-microtubule action and thus cleanly differs from CA4 in its mechanism of action at the molecular level.
2011
Brangwynne CP, Mitchison TJ, a Hyman A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci U S A. 2011;108 (11) :4334-9.Abstract
For most intracellular structures with larger than molecular dimensions, little is known about the connection between underlying molecular activities and higher order organization such as size and shape. Here, we show that both the size and shape of the amphibian oocyte nucleolus ultimately arise because nucleoli behave as liquid-like droplets of RNA and protein, exhibiting characteristic viscous fluid dynamics even on timescales of < 1 min. We use these dynamics to determine an apparent nucleolar viscosity, and we show that this viscosity is ATP-dependent, suggesting a role for active processes in fluidizing internal contents. Nucleolar surface tension and fluidity cause their restructuring into spherical droplets upon imposed mechanical deformations. Nucleoli exhibit a broad distribution of sizes with a characteristic power law, which we show is a consequence of spontaneous coalescence events. These results have implications for the function of nucleoli in ribosome subunit processing and provide a physical link between activity within a macromolecular assembly and its physical properties on larger length scales.
Shi J, Zhou Y, Huang H-C, Mitchison TJ. Navitoclax (ABT-263) accelerates apoptosis during drug-induced mitotic arrest by antagonizing Bcl-xL. Cancer Res. 2011;71 (13) :4518-26.Abstract
Combining microtubule-targeting antimitotic drugs with targeted apoptosis potentiators is a promising new chemotherapeutic strategy to treat cancer. In this study, we investigate the cellular mechanism by which navitoclax (previously called ABT-263), a Bcl-2 family inhibitor, potentiates apoptosis triggered by paclitaxel and an inhibitor of kinesin-5 (K5I, also called a KSP inhibitor), across a panel of epithelial cancer lines. By using time-lapse microscopy, we showed that navitoclax has little effect on cell death during interphase, but strongly accelerates apoptosis during mitotic arrest, and greatly increases the fraction of apoptosis-resistant cells that die. By systematically knocking down individual Bcl-2 proteins, we determined that Mcl-1 and Bcl-xL are the primary negative regulators of apoptosis during prolonged mitotic arrest. Mcl-1 levels decrease during mitotic arrest because of an imbalance between synthesis and turnover, and turnover depends in part on the MULE/HUWE1 E3 ligase. The combination of Mcl-1 loss with inhibition of Bcl-xL by navitoclax causes rapid apoptosis in all lines tested. Variation in expression levels of Mcl-1 and Bcl-xL largely determines variation in response to antimitotics alone, and antimitotics combined with navitoclax, across our panel. We concluded that Bcl-xL is a critical target of Bcl-2 family inhibitors for enhancing the lethality of antimitotic drugs in epithelial cancers, and combination treatment with navitoclax and a spindle specific antimitotic, such as a K5I, might be more effective than paclitaxel alone.
Field CM, Wühr M, Anderson GA, Kueh HY, Strickland D, Mitchison TJ. Actin behavior in bulk cytoplasm is cell cycle regulated in early vertebrate embryos. J Cell Sci. 2011;124 (Pt 12) :2086-95.Abstract
The mechanical properties of cells change as they proceed through the cell cycle, primarily owing to regulation of actin and myosin II. Most models for cell mechanics focus on actomyosin in the cortex and ignore possible roles in bulk cytoplasm. We explored cell cycle regulation of bulk cytoplasmic actomyosin in Xenopus egg extracts, which is almost undiluted cytoplasm from unfertilized eggs. We observed dramatic gelation-contraction of actomyosin in mitotic (M phase) extract where Cdk1 activity is high, but not in interphase (I-phase) extract. In spread droplets, M-phase extract exhibited regular, periodic pulses of gelation-contraction a few minutes apart that continued for many minutes. Comparing actin nucleation, disassembly and myosin II activity between M-phase and I-phase extracts, we conclude that regulation of nucleation is likely to be the most important for cell cycle regulation. We then imaged F-actin in early zebrafish blastomeres using a GFP-Utrophin probe. Polymerization in bulk cytoplasm around vesicles increased dramatically during mitosis, consistent with enhanced nucleation. We conclude that F-actin polymerization in bulk cytoplasm is cell cycle regulated in early vertebrate embryos and discuss possible biological functions of this regulation.
Orth JD, Kohler RH, Foijer F, Sorger PK, Weissleder R, Mitchison TJ. Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. Cancer Res. 2011;71 (13) :4608-16.Abstract
Cancer relies upon frequent or abnormal cell division, but how the tumor microenvironment affects mitotic processes in vivo remains unclear, largely due to the technical challenges of optical access, spatial resolution, and motion. We developed high-resolution in vivo microscopy methods to visualize mitosis in a murine xenograft model of human cancer. Using these methods, we determined whether the single-cell response to the antimitotic drug paclitaxel (Ptx) was the same in tumors as in cell culture, observed the impact of Ptx on the tumor response as a whole, and evaluated the single-cell pharmacodynamics (PD) of Ptx (by in vivo PD microscopy). Mitotic initiation was generally less frequent in tumors than in cell culture, but subsequently it proceeded normally. Ptx treatment caused spindle assembly defects and mitotic arrest, followed by slippage from mitotic arrest, multinucleation, and apoptosis. Compared with cell culture, the peak mitotic index in tumors exposed to Ptx was lower and the tumor cells survived longer after mitotic arrest, becoming multinucleated rather than dying directly from mitotic arrest. Thus, the tumor microenvironment was much less proapoptotic than cell culture. The morphologies associated with mitotic arrest were dose and time dependent, thereby providing a semiquantitative, single-cell measure of PD. Although many tumor cells did not progress through Ptx-induced mitotic arrest, tumor significantly regressed in the model. Our findings show that in vivo microscopy offers a useful tool to visualize mitosis during tumor progression, drug responses, and cell fate at the single-cell level.
Hu C-K, Coughlin M, Field CM, Mitchison TJ. KIF4 regulates midzone length during cytokinesis. Curr Biol. 2011;21 (10) :815-24.Abstract
BACKGROUND: Midzones, also called central spindles, are an array of antiparallel microtubules that form during cytokinesis between the separated chromosomes. Midzones can be considered to be platforms that recruit specific proteins and orchestrate cytokinetic events, such as sister nuclei being kept apart, furrow ingression, and abscission. Despite this important role, many aspects of midzone biology remain unknown, including the dynamic organization of midzone microtubules. Investigating midzone microtubule dynamics has been difficult in part because their plus ends are interdigitated and buried in a dense matrix, making them difficult to observe. RESULT: We employed monopolar cytokinesis to reveal that midzone plus ends appear to be nondynamic. We identified the chromokinesin KIF4 as a negative regulator of midzone plus-end dynamics whose activity controls midzone length but not stability. KIF4 is required to terminate midzone elongation in late anaphase. In the absence of KIF4, midzones elongate abnormally, and their overlap regions are unfocused. Electron-dense material and midbodies are both absent from the elongated midzones, and actin filaments from the furrow cortex are not disassembled after ingression. CONCLUSION: KIF4-mediated midzone length regulation appears to occur by terminating midzone elongation at a specific time during cytokinesis, making midzones and mitotic spindles differ in their dynamics and length-regulating mechanisms.
Wühr M, Obholzer ND, Megason SG, Detrich HW, Mitchison TJ. Live imaging of the cytoskeleton in early cleavage-stage zebrafish embryos. Methods Cell Biol. 2011;101 :1-18.Abstract
The large and transparent cells of cleavage-stage zebrafish embryos provide unique opportunities to study cell division and cytoskeletal dynamics in very large animal cells. Here, we summarize recent progress, from our laboratories and others, on live imaging of the microtubule and actin cytoskeletons during zebrafish embryonic cleavage. First, we present simple protocols for extending the breeding competence of zebrafish mating ensembles throughout the day, which ensures a steady supply of embryos in early cleavage, and for mounting these embryos for imaging. Second, we describe a transgenic zebrafish line [Tg(bactin2:HsENSCONSIN17-282-3xEGFP)hm1] that expresses the green fluorescent protein (GFP)-labeled microtubule-binding part of ensconsin (EMTB-3GFP). We demonstrate that the microtubule-based structures of the early cell cycles can be imaged live, with single microtubule resolution and with high contrast, in this line. Microtubules are much more easily visualized using this tagged binding protein rather than directly labeled tubulin (injected Alexa-647-labeled tubulin), presumably due to lower background from probe molecules not attached to microtubules. Third, we illustrate live imaging of the actin cytoskeleton by injection of the actin-binding fragment of utrophin fused to GFP. Fourth, we compare epifluorescence-, spinning-disc-, laser-scanning-, and two-photon-microscopic modalities for live imaging of the microtubule cytoskeleton in early embryos of our EMTB-3GFP-expressing transgenic line. Finally, we discuss future applications and extensions of our methods.
Groen AC, Coughlin M, Mitchison TJ. Microtubule assembly in meiotic extract requires glycogen. Mol Biol Cell. 2011;22 (17) :3139-51.Abstract
The assembly of microtubules during mitosis requires many identified components, such as γ-tubulin ring complex (γ-TuRC), components of the Ran pathway (e.g., TPX2, HuRP, and Rae1), and XMAP215/chTOG. However, it is far from clear how these factors function together or whether more factors exist. In this study, we used biochemistry to attempt to identify active microtubule nucleation protein complexes from Xenopus meiotic egg extracts. Unexpectedly, we found both microtubule assembly and bipolar spindle assembly required glycogen, which acted both as a crowding agent and as metabolic source glucose. By also reconstituting microtubule assembly in clarified extracts, we showed microtubule assembly does not require ribosomes, mitochondria, or membranes. Our clarified extracts will provide a powerful tool for activity-based biochemical fractionations for microtubule assembly.
Tang Y, Orth JD, Xie T, Mitchison TJ. Rapid induction of apoptosis during Kinesin-5 inhibitor-induced mitotic arrest in HL60 cells. Cancer Lett. 2011;310 (1) :15-24.Abstract
Small molecule inhibitors of Kinesin-5 (K5Is) that arrest cells in mitosis with monopolar spindles are promising anti-cancer drug candidates. Clinical trials of K5Is revealed dose-limiting neutropenia, or loss of neutrophils, for which the molecular mechanism is unclear. We investigated the effects of a K5I on HL60 cells, a human promyelocytic leukemia cell line that is often used to model dividing neutrophil progenitors in cell culture. We found K5I treatment caused unusually rapid death of HL60 cells exclusively during mitotic arrest. This mitotic death occurred via the intrinsic apoptosis pathway with molecular events that include cytochrome c leakage into the cytoplasm, caspase activation, and Parp1 cleavage. Bcl-2 overexpression protected from death. We probed mitochondrial physiology to find candidate triggers of cytochrome c release, and observed a decrease of membrane potential (ΔΨm) before mitochondrial outer membrane permeabilization (MOMP). Interestingly, this loss of ΔΨm was not blocked by overexpressing Bcl-2, suggesting it might be a cause of Bax/Bak activation, not a consequence. Taken together, these results show that K5I induces intrinsic apoptosis during mitotic arrest in HL60 with loss of ΔΨm as an upstream event of MOMP.
2010
Ozlü N, Monigatti F, Renard BY, Field CM, Steen H, Mitchison TJ, Steen JJ. Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition. Mol Cell Proteomics. 2010;9 (2) :336-50.Abstract
The cytoskeleton globally reorganizes between mitosis (M phase) and cytokinesis (C phase), which presumably requires extensive regulatory changes. To reveal these changes, we undertook a comparative proteomics analysis of cells tightly drug-synchronized in each phase. We identified 25 proteins that bind selectively to microtubules in C phase and identified several novel binding partners including nucleolar and spindle-associated protein. C phase-selective microtubule binding of many of these proteins depended on activity of Aurora kinases as assayed by treatment with the drug VX680. Aurora-B binding partners switched dramatically between M phase to C phase, and we identified several novel C phase-selective Aurora-B binding partners including PRC1, KIF4, and anaphase-promoting complex/cyclosome. Our approach can be extended to other cellular compartments and cell states, and our data provide the first broad biochemical framework for understanding C phase. Concretely, we report a central role for Aurora-B in regulating the C phase cytoskeleton.
Mitchison TJ, Mitchison HM. Cell biology: How cilia beat. Nature. 2010;463 (7279) :308-9.
Huang H-C, Shi J, Orth JD, Mitchison TJ. Cell death when the SAC is out of commission. Cell Cycle. 2010;9 (11) :2049-50.
Gatlin JC, Matov A, Danuser G, Mitchison TJ, Salmon ED. Directly probing the mechanical properties of the spindle and its matrix. J Cell Biol. 2010;188 (4) :481-9.Abstract
Several recent models for spindle length regulation propose an elastic pole to pole spindle matrix that is sufficiently strong to bear or antagonize forces generated by microtubules and microtubule motors. We tested this hypothesis using microneedles to skewer metaphase spindles in Xenopus laevis egg extracts. Microneedle tips inserted into a spindle just outside the metaphase plate resulted in spindle movement along the interpolar axis at a velocity slightly slower than microtubule poleward flux, bringing the nearest pole toward the needle. Spindle velocity decreased near the pole, which often split apart slowly, eventually letting the spindle move completely off the needle. When two needles were inserted on either side of the metaphase plate and rapidly moved apart, there was minimal spindle deformation until they reached the poles. In contrast, needle separation in the equatorial direction rapidly increased spindle width as constant length spindle fibers pulled the poles together. These observations indicate that an isotropic spindle matrix does not make a significant mechanical contribution to metaphase spindle length determination.
Martin DS, Fathi R, Mitchison TJ, Gelles J. FRET measurements of kinesin neck orientation reveal a structural basis for processivity and asymmetry. Proc Natl Acad Sci U S A. 2010;107 (12) :5453-8.Abstract
As the smallest and simplest motor enzymes, kinesins have served as the prototype for understanding the relationship between protein structure and mechanochemical function of enzymes in this class. Conventional kinesin (kinesin-1) is a motor enzyme that transports cargo toward the plus end of microtubules by a processive, asymmetric hand-over-hand mechanism. The coiled-coil neck domain, which connects the two kinesin motor domains, contributes to kinesin processivity (the ability to take many steps in a row) and is proposed to be a key determinant of the asymmetry in the kinesin mechanism. While previous studies have defined the orientation and position of microtubule-bound kinesin motor domains, the disposition of the neck coiled-coil remains uncertain. We determined the neck coiled-coil orientation using a multidonor fluorescence resonance energy transfer (FRET) technique to measure distances between microtubules and bound kinesin molecules. Microtubules were labeled with a new fluorescent taxol donor, TAMRA-X-taxol, and kinesin derivatives with an acceptor fluorophore attached at positions on the motor and neck coiled-coil domains were used to reconstruct the positions and orientations of the domains. FRET measurements to positions on the motor domain were largely consistent with the domain orientation determined in previous studies, validating the technique. Measurements to positions on the neck coiled-coil were inconsistent with a radial orientation and instead demonstrated that the neck coiled-coil is parallel to the microtubule surface. The measured orientation provides a structural explanation for how neck surface residues enhance processivity and suggests a simple hypothesis for the origin of kinesin step asymmetry and "limping."
Wühr M, Tan ES, Parker SK, Detrich WH, Mitchison TJ. A model for cleavage plane determination in early amphibian and fish embryos. Curr Biol. 2010;20 (22) :2040-5.Abstract
Current models for cleavage plane determination propose that metaphase spindles are positioned and oriented by interactions of their astral microtubules with the cellular cortex, followed by cleavage in the plane of the metaphase plate [1, 2]. We show that in early frog and fish embryos, where cells are unusually large, astral microtubules in metaphase are too short to position and orient the spindle. Rather, the preceding interphase aster centers and orients a pair of centrosomes prior to nuclear envelope breakdown, and the spindle assembles between these prepositioned centrosomes. Interphase asters center and orient centrosomes with dynein-mediated pulling forces. These forces act before astral microtubules contact the cortex; thus, dynein must pull from sites in the cytoplasm, not the cell cortex as is usually proposed for smaller cells. Aster shape is determined by interactions of the expanding periphery with the cell cortex or with an interaction zone that forms between sister-asters in telophase. We propose a model to explain cleavage plane geometry in which the length of astral microtubules is limited by interaction with these boundaries, causing length asymmetries. Dynein anchored in the cytoplasm then generates length-dependent pulling forces, which move and orient centrosomes.
Kueh HY, Brieher WM, Mitchison TJ. Quantitative analysis of actin turnover in Listeria comet tails: evidence for catastrophic filament turnover. Biophys J. 2010;99 (7) :2153-62.Abstract
Rapid assembly and disassembly (turnover) of actin filaments in cytoplasm drives cell motility and shape remodeling. While many biochemical processes that facilitate filament turnover are understood in isolation, it remains unclear how they work together to promote filament turnover in cells. Here, we studied cellular mechanisms of actin filament turnover by combining quantitative microscopy with mathematical modeling. Using live cell imaging, we found that actin polymer mass decay in Listeria comet tails is very well fit by a simple exponential. By analyzing candidate filament turnover pathways using stochastic modeling, we found that exponential polymer mass decay is consistent with either slow treadmilling, slow Arp2/3-dissociation, or catastrophic bursts of disassembly, but is inconsistent with acceleration of filament turnover by severing. Imaging of single filaments in Xenopus egg extract provided evidence that disassembly by bursting dominates isolated filament turnover in a cytoplasmic context. Taken together, our results point to a pathway where filaments grow transiently from barbed ends, rapidly terminate growth to enter a long-lived stable state, and then undergo a catastrophic burst of disassembly. By keeping filament lengths largely constant over time, such catastrophic filament turnover may enable cellular actin assemblies to maintain their mechanical integrity as they are turning over.

Pages