Disassembly of Actin and Keratin Networks by Aurora B Kinase at the Midplane of Cleaving Xenopus laevis Eggs

Date Published:

2019 Jun 17

Abstract:

The large length scale of Xenopus laevis eggs facilitates observation of bulk cytoplasm dynamics far from the cortex during cytokinesis. The first furrow ingresses through the egg midplane, which is demarcated by chromosomal passenger complex (CPC) localized on microtubule bundles at the boundary between asters. Using an extract system, we found that local kinase activity of the Aurora B kinase (AURKB) subunit of the CPC caused disassembly of F-actin and keratin between asters and local softening of the cytoplasm as assayed by flow patterns. Beads coated with active CPC mimicked aster boundaries and caused AURKB-dependent disassembly of F-actin and keratin that propagated ∼40 μm without microtubules and much farther with microtubules present. Consistent with extract observations, we observed disassembly of the keratin network between asters in zygotes fixed before and during 1 cytokinesis. We propose that active CPC at aster boundaries locally reduces cytoplasmic stiffness by disassembling actin and keratin networks. Possible functions of this local disassembly include helping sister centrosomes move apart after mitosis, preparing a soft path for furrow ingression, and releasing G-actin from internal networks to build cortical networks that support furrow ingression.